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a b s t r a c t

The problem of the indentation of a rigid punch into the upper face of a layer when a uniform field of
initial stresses is present in the layer is considered. A model of an isotropic incompressible non-linearly
elastic material, specified by the Mooney elastic potential, is used. The case when the layer rests on
the lower face without friction is investigated. It is assumed that the additional stresses, due to the
punch indentation, are small compared with the initial stresses. This assumption enables the problem of
determining the initial stresses to be linearized. It is later reduced to the solution of an integral equation
of the first kind with a difference kernel with respect to the pressure in the contact region. Depending on
the dimensionless parameter �, characterizing the relative thickness of the layer, asymptotic solutions
are constructed for large and small values of this parameter. A solution for a whole range of values of
the parameter, investigated by the “large” and “small” � methods, is also obtained using a modified
Multhopp–Kalandiya method.

© 2009 Elsevier Ltd. All rights reserved.

1. Formulation of the problem

Consider a layer of thickness h of isotropic incompressible non-linearly elastic material, resting on the lower face without friction. The
layer is in a uniform stress state, produced by stretching forces, applied at infinity. We will choose a system of coordinates Oxy such that
the Oy axis is perpendicular to the layer surface. Then, the components of the stress tensor in the initial state have the form

(1.1)

We will further assume that, after preliminary large deformation, a rigid punch, having the shape of an infinite strip

acts on the upper face of the layer.
We will assume that the perturbations of the strains and stresses produced by the action of the punch are relatively small. This enables

us to linearize the problem of determining the additional stresses and displacements on the background of the main stress-strain state.
We will assume that the elastic properties of the material are specified by the Mooney elastic potential1 [1]. Hence, the components of

the tensor of the additional stresses after linearization will have the form

(1.2)

where q is the additional hydrostatic pressure and u and v are additional displacements along the x and y axes. Taking this into account,
we obtain Lamé’s equations. Supplementing them by the condition of incompressibility, we have a complete system of equations for
determining the unknown displacements u and v and the function q

(1.3)
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The boundary conditions have the form

(1.4)

Here � is the depth of the punch into the layer, � is its angle of rotation around the axis perpendicular to the Oxy plane, and f(x) specifies
the punch surface.

It is necessary to consider an auxiliary problem in which we add one more boundary condition to those already mentioned, namely,
with respect to the normal stress under the punch:

We will show later that the problem reduces to determining this contact pressure from the integral equation.

2. Reduction of the problem to the solution of an integral equation

We will apply a Fourier transformation to Eq. (1.3) and, using its properties, we arrive at a system of ordinary differential equations in
the transformants, for which we introduce the notation

The general solution then has the form

(2.1)

In order to determine the unknown functions Ci = Ci(�) (i = 1, 2, 3, 4), we substitute solutions (2.1) into boundary conditions (1.4),
transformed into boundary conditions for the transformants. We also introduce the following notation for the transformant of the contact
pressure

As a result we arrive at a system four linear algebraic equations in Ci(�), solving which, we obtain, in particular,

We will use the last boundary condition (the other ones are already satisfied). We obtain

Note that the function K(u) = L(u)/u is even, and hence, using the representation for the transformant Q1(�), we arrive at an integral equation,
which, after changing to the dimensionless quantities

(henceforth the primes and tildes will be omitted) can be represented as follows:

(2.2)

3. The modified Multhopp–Kalandiya method2

This method enables us, using a certain discretization of the integral equation, to reduce it to a system of linear algebraic equations. We
will have in mind the behaviour of the function L(u) at zero and at an infinity

It can be shown that in this case the kernel of integral Eq. (2.2) enables us to isolate the logarithmic singularity

(3.1)
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where F(t) is a regular even function. Consequently, we can reduce Eq. (2.2) to the form

(3.2)

Suppose the function g(x) is such that its derivative satisfies the Lipschitz condition

Then, with this value of � a solution of Eq. (3.2) exists in the class Lp [−1, 1] (1 < p < 2), and it can be represented in the form

where the function �(x) is at least continuous.
We will construct an interpolation Lagrange polynomial �̃(�) (x = cos �) for it with Chebyshev nodes. Then, after replacing the function

�(x) in Eq. (3.2) by its Lagrange polynomial, the integrals on the left-hand side of this equation can be calculated explicitly, while on the
right-hand side, with integrand F(t), they can be calculated approximately using Gauss quadrature formula. It was also noted previously
that the function F(t) is even, and hence we can take an odd number of nodes N = 2l + 1 and obtain a system of l + 1 linear algebraic equations
for determining the quantities �(�n) (n = 1, . . ., l + 1; �n = �(2n − 1)/2N, xn = cos �n)

where

4. Asymptotic solution for a large relative thickness of the layer3

To construct the asymptotic solution, we will use representations (3.1) and (3.2), and we will expand the function F(t) in a converging
power series, taking into account the fact that

(4.1)

Consequently, Eq. (3.2) becomes

(4.2)

We will write the solution of Eq. (4.2) in the form of a series

(4.3)

Substituting expression (4.3) into Eq. (4.2) and equating terms of like powers of �, we arrive at an infinite system of successively solvable
integral equations in the function �n. The solution has the form
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where N0 is the dimensionless pressure under the punch, given by the equation

s Multhopp–Kalandiya method Asymptotic solution

� = 0.5 1 2 4 0.5 1 2 2 4

0 17.42 9.42 5.48 3.57 16.68 9.21 5.47 5.57 3.48
2 9.77 5.76 3.75 2.69 9.69 5.74 3.78 3.76 2.69
3 5.60 3.60 2.58 2.00 5.49 3.57 2.67 2.58 2.00

5. Asymptotic solution for a small relative thickness of the layer3

It can be shown that, for sufficiently small �, the solution of Eq. (2.2) can be sought in the form

(5.1)

The functions 	(1), 	(2), 	(0) are solutions of the integral equations

(5.2)

The solutions of the first two equations of (5.2) can be found by the Wiener–Hopf method,4 and the solution of the last one can be found
using the convolution theorem for the Fourier integral transformation.

We will consider a specific simple case. Suppose g(x) = �′ = 2�/a (the prime will henceforth be omitted). Then the solution of the third
integral equation of (5.2) has the form

(5.3)

To construct solutions of the first two integral equations of (5.2) in analytic form we approximate the function L(u)/u by the expression

(5.4)

The constants A and B are chosen so as to satisfy the relations

Taking the approximation into account we obtain

Substituting the solutions obtained into (5.1) and evaluating the integrals we obtain

The table shows values of N0 for different � and s. For each value of s the approximation L*(u) was constructed so that the error did not
exceed 14%.
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